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Abstract Recently, Takahashi established a new approximation theory for finitely generated modules

over commutative Noetherian rings, which unifies the spherical approximation theorem due to Auslan-

der and Bridger and the Cohen–Macaulay approximation theorem due to Auslander and Buchweitz.

In this paper we generalize these results to much more general case over non-commutative rings. As

an application, we establish a relation between the injective dimension of a generalized tilting module

ω and the finitistic dimension with respect to ω.
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1 Introduction

In 1969, Auslander and Bridger introduced in [1] the notion of n-torsionfree modules, which is
a special case of n-syzygy modules. Then they obtained an equivalent characterization for an
n-syzygy module of a finitely generated module M being n-torsionfree in terms of a spherical
approximation presentation of M over a commutative Noetherian ring. On the other hand,
Auslander and Buchweitz proved in [2] that there exists a Cohen–Macaulay approximation
presentation for any finitely generated module over a commutative Cohen–Macaulay local ring
with the canonical module. Recently, Takahashi unified these two approximation theorems
and established a new approximation theory for finitely generated modules over commutative
Noetherian rings as follows.

Theorem 1.1 ([3, Theorem A]) Let R be a commutative Noetherian ring, and let M and
C be finitely generated R-modules and n a positive integer. If C is n-semidualizing, then the
following statements are equivalent.

(1) Any n-syzygy of M is n-C-torsionfree.
(2) There exists an exact sequence 0 → Y → X → M → 0 of finitely generated R-modules

such that Exti
R(X, C) = 0 for any 1 ≤ i ≤ n, and there exists an exact sequence 0 → Cn−1 →

· · · → C1 → C0 → Y → 0 of R-modules with each Ci isomorphic to a direct summand of a
finite direct sum of copies of C.
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Let R and S be rings. We use mod R (resp. mod Sop) to denote the category of finitely
generated left R-modules (resp. right S-modules). Let RωS be an (R, S)-bimodule with Rω in
mod R and ωS in mod Sop. We use addR ω (resp. add ωS) to denote the full subcategory of
mod R (resp. mod Sop) consisting of all modules isomorphic to the direct summands of finite
direct sums of copies of Rω (resp. ωS). We denote either HomR(−,R ωS) or HomSop(−,R ωS)
by (−)ω.

For any n ≥ 1, an (R, S)-bimodule RωS with Rω ∈ mod R and ωS ∈ mod Sop is called faith-
fully balanced and n-selforthogonal if the following conditions are satisfied: (1) R = End(ωS)
and S = End(Rω), and (2) Exti

R(Rω,R ω) = 0 = Exti
Sop(ωS , ωS) for any 1 ≤ i ≤ n. When

R (= S) is commutative, the notion of faithfully balanced and n-selforthogonal bimodules coin-
cides with that of n-semidualizing bimodules in [3]. If R is a left Noetherian ring, S is a right
Noetherian ring and RωS is a faithfully balanced and n-selforthogonal bimodule for all n, then

Rω is just a generalized tilting module with S = End(Rω) in the sense of Wakamatsu [4, 5]. In
this case, ωS is also a generalized tilting module with R = End(ωS) by [5, Corollary 3.2].

Definition 1.2 Let C be a full subcategory of mod R and A, B ∈ mod R. For a positive
integer n, A is called an n-C -syzygy of B, denoted by A = Ωn

C (B), if there exists an exact
sequence 0 → A → Cn−1 → · · · → C1 → C0 → B → 0 in mod R with all Ci ∈ C . We use
Ωn

C (mod R) to denote the full subcategory of modR consisting of n-C -syzygy modules. In case
C = addR ω for some module Rω ∈ mod R, we call an n-C -syzygy module n-ω-syzygy, and
denote by Ωn

ω(modR) the full subcategory of mod R consisting of n-ω-syzygy modules.

Let R be a left Noetherian ring, S a right Noetherian ring and RωS a faithfully balanced
and n-selforthogonal bimodule. Assume that M ∈ mod R and P1

f→ P0 → M → 0 is a
projective presentation of M in mod R. Then we have an exact sequence 0 → Mω → Pω

0
fω

−→
Pω

1 → Trω M → 0 in mod Sop, where Trω M = Coker fω. Recall from [6] that M is called
n-ω-torsionfree if Exti

Sop(Trω M, ω) = 0 for any 1 ≤ i ≤ n. Though Trω M depends on the
choice of the projective presentation of M , the notion of n-ω-torsionfree modules is well defined
by [6, Proposition 3]. We denote by T n

ω (modR) = {M ∈ mod R is n-ω-torsionfree}. In general,
T n

ω (modR) ⊆ Ωn
ω(modR) for any n ≥ 1 (see [7]). We remark that when RωS = RRR, the

notions of n-ω-syzygy modules and n-ω-torsionfree modules are just that of n-syzygy modules
and n-torsionfree modules in [1].

Let M ∈ modR and n ≥ 0. We define the ω-dimension of M , denoted by ω-dimR M , as
inf{n | there exists an exact sequence 0 → ωn → · · · → ω1 → ω0 → M → 0 in mod R with all
ωi ∈ addR ω}. For a full subcategory C of mod R, we denote by genn(C ) = {M | there exists
an exact sequence Cn → · · · → C1 → C0 → M → 0 in mod R with all Ci ∈ C }. In addition,
we denote by ⊥n

R ω = {M ∈ mod R | Exti
R(M, ω) = 0 for any 1 ≤ i ≤ n}.

In Section 3, we will prove the following

Theorem 1.3 Let R be a left Noetherian ring, S a right Noetherian ring and RωS a faithfully
balanced and n-selforthogonal bimodule, and let C be a full subcategory of ⊥n

R ω ∩ T n
ω (modR)

and M ∈ genn(C ) with n ≥ 1. Then the following statements are equivalent.

(1) Ωn
C (M) is n-ω-torsionfree.

(2) There exists an exact sequence 0 → B → A → M → 0 in mod R with A ∈ ⊥n

R ω and
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ω-dimR B ≤ n − 1.

The special case for C = add RR in Theorem 1.3 is a non-commutative version of Theo-
rem 1.1. In addition, we establish the relation between the injective dimension of Rω and the
so-called finitistic dimension of R with respect to ω (see Section 3 for the definition) when the
condition (2) in Theorem 1.3 is satisfied for any module in modR (Proposition 3.7).

Let A ∈ mod R (resp. mod Sop) and i be a non-negative integer. Recall from [7] that
the grade of A with respect to ω, written gradeω A, is at least i if Extj

R(A, ω) = 0 (resp.
Extj

Sop(A, ω) = 0) for any 0 ≤ j < i. Auslander and Bridger obtained in [1] an equivalent
characterization for the condition that an i-syzygy module is i-torsionfree for any 1 ≤ i ≤ n in
terms of the grade of modules as follows.

Theorem 1.4 ([1, Proposition 2.26]) Let R be a left and right Noetherian ring and n ≥ 1.
Then the following statements are equivalent.

(1) Ωi
R(M) is i-torsionfree for any M ∈ mod R and 1 ≤ i ≤ n.

(2) gradeR Exti+1
R (M, R) ≥ i for any M ∈ mod R and 1 ≤ i ≤ n − 1.

Takahashi got in [3, Proposition 4.2] a C-version of Theorem 1.4 for an n-semidualizing
module C over a commutative Noetherian ring. In Section 4, we will prove the following

Theorem 1.5 Let R be a left Noetherian ring, S a right Noetherian ring and RωS a faithfully
balanced and n-selforthogonal bimodule, and let C be a full subcategory of ⊥n

R ω ∩ T n
ω (modR)

and M ∈ genn(C ) with n ≥ 1. Then the following statements are equivalent.
(1) Ωi

C (M) is i-ω-torsionfree for any 1 ≤ i ≤ n.
(2) gradeω Exti+1

R (M, ω) ≥ i for any 1 ≤ i ≤ n − 1.

The special case for C = add RR in Theorem 1.5 is a non-commutative version of [3,
Proposition 4.2]. Putting RωS = RRR and C = add RR in Theorem 1.5, we get Theorem 1.4.

2 Preliminaries

Let R and S be rings and RωS an (R, S)-bimodule, and let M ∈ mod R and σM : M → Mωω

via σM (x)(f) = f(x) for any x ∈ M and f ∈ Mω be the canonical evaluation homomorphism.
Recall that M ∈ mod R is called ω-torsionless if σM is a monomorphism; and M is called
ω-reflexive if σM is an isomorphism.

Lemma 2.1 Let R and S be rings and RωS an (R, S)-bimodule, and let M ∈ mod R and
H1

f→ H0 → M → 0 be an exact sequence in mod R with H0, H1 ω-reflexive. Put X = Coker fω.
Then we have

(1) If Ext1Sop(Hω
0 , ω) = 0 = Ext1Sop(Hω

1 , ω), then Ker σM
∼= Ext1Sop(X, ω); if further Ext2Sop

(Hω
1 , ω) = 0, then CokerσM

∼= Ext2Sop(X, ω).
(2) If Ext1R(H0, ω) = 0 = Ext1R(H1, ω), then Ker σX

∼= Ext1R(M, ω); if further Ext2R(H0, ω)
= 0, then CokerσX

∼= Ext2R(M, ω).

Proof (1) Let

H1
f ��

π1
�� ����

��
��

��
H0

�� M �� 0

Im f
�� i1

����������
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be an exact sequence in mod R with H0, H1 ω-reflexive, Ext1Sop(Hω
0 , ω) = 0 = Ext1Sop(Hω

1 , ω)
and f = i1π1 the natural epic-monic decomposition of f . Then we get an exact sequence:

0 �� Mω �� Hω
0

fω

��

π2

�� ����������
Hω

1
�� X �� 0

Im fω
�� i2

����������

in mod Sop with fω = i2π2 the natural epic-monic decomposition of fω, and the following exact
commutative diagram with exact rows:

0 �� Im f
i1 ��

g

���
�
� H0

��

σH0

��

M ��

σM

��

0

0 �� (Im fω)ω
πω
2 �� Hωω

0
�� Mωω �� Ext1Sop(Im fω, ω) �� 0,

where σH0 is an isomorphism and g is an induced homomorphism. By the snake lemma, we
have that g is monic and KerσM

∼= Coker g.
Because σH0i1 = πω

2 g, (σH0i1)π1 = (πω
2 g)π1 and so σH0f = πω

2 gπ1. Since σH0f = fωωσH1

and fωω = πω
2 iω2 , πω

2 iω2 σH1 = πω
2 gπ1. Since πω

2 is monic, iω2 σH1 = gπ1. Thus Im(iω2 σH1) ⊆ Im g,
and therefore, by [8, Theorem 3.6], there exists an induced homomorphism h such that the
following diagram is commutative and exact:

H1

iω
2 σH1��

π1

��

(Im fω)ω �� Ext1Sop(X, ω) ��

h

���
�
�

0

0 �� Im f
g ��

��

(Im fω)ω �� Coker g �� 0

0

By the snake lemma, h is an isomorphism, so KerσM
∼= Coker g ∼= Ext1Sop(X, ω).

If further Ext2Sop(Hω
1 , ω) = 0, then Ext1Sop(Im fω, ω) ∼= Ext2Sop(X, ω). So we have CokerσM

∼= Ext1Sop(Im fω, ω)(∼= Ext2Sop(X, ω)).
(2) From the exact sequence H1

f→ H0 → M → 0 in mod R, we get an exact sequence

0 → Mω → Hω
0

fω

→ Hω
1 → X → 0 in mod Sop and the following commutative diagram with

exact rows:

H1
f ��

σH1

��

H0
��

σH0

��

M ��

��

0

0 �� Xω �� Hωω
1

fωω

�� Hωω
0

�� Coker fωω �� 0.

Because both σH0 and σH1 are isomorphisms, M ∼= Coker fωω. Notice that both Hω
0 and Hω

1

are also ω-reflexive, then it is not difficult to see that the proof of (2) is analogous to that of (1).
So we omit it. �

From now on, R is a left Noetherian ring, S is a right Noetherian ring and RωS is a faithfully
balanced and n-selforthogonal bimodule with n ≥ 1.
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By Lemma 2.1, a module M ∈ mod R is ω-torsionless if and only if it is 1-ω-torsionfree, and
M is ω-reflexive if and only if it is 2-ω-torsionfree (in this case n ≥ 2). In addition, it is easy
to see that any projective module in modR (resp. mod Sop) and any module in addR ω (resp.
add ωS) are ω-reflexive.

Lemma 2.2 ([7, Lemma 2.9]) Let n ≥ 3. Then an ω-reflexive module M in mod R is n-ω-
torsionfree if and only if Exti

Sop(Mω, ω) = 0 for any 1 ≤ i ≤ n − 2.

Lemma 2.3 Let C be a full subcategory of ⊥2
R ω ∩ T 2

ω (modR) and M ∈ gen2(C ). Then the
following statements are equivalent.

(1) Ω2
C (M) is ω-reflexive.

(2) [Ext2R(M, ω)]ω = 0.

Proof Let M ∈ gen2(C ) and

0 → Ω2
C (M)

f−→ C → Ω1
C (M) → 0

be an exact sequence in mod R with C ∈ C . By applying the functor (−)ω, we get the following
exact sequence:

0 → [Ω1
C (M)]ω → Cω fω

−→ [Ω2
C (M)]ω → Ext2R(M, ω) → 0. (2.1)

(1) ⇒ (2) We have the following commutative diagram with exact rows:

0 �� Ω2
C (M) ��

σΩ2
C

(M)

��

C

σC

��
0 �� [Ext2R(M, ω)]ω �� [Ω2

C (M)]ωω �� Cωω

with σC an isomorphism. By (1), Ω2
C (M) is ω-reflexive, so σΩ2

C (M) is also an isomorphism and
hence [Ext2R(M, ω)]ω = 0.

(2) ⇒ (1) Set N = Im fω and decompose (2.1) into two short exact sequences: 0 →
[Ω1

C (M)]ω → Cω π−→ N → 0 and 0 → N
α−→ [Ω2

C (M)]ω → Ext2R(M, ω) → 0. By applying
(−)ω to the former exact sequence, we get the following commutative diagram with exact rows:

0 �� Ω2
C (M)

f ��

β

���
�
� C ��

σC

��

Ω1
C (M) ��

σΩ1
C

(M)

��

�� 0

0 �� Nω πω
�� Cωω �� [Ω1

C (M)]ωω

with σC an isomorphism and σΩ1
C (M) a monomorphism. So β is an isomorphism. Because

πωβ = σCf = fωωσΩ2
C (M) = πωαωσΩ2

C (M) and πω is a monomorphism, β = αωσΩ2
C (M) and we

have the following commutative diagram with exact rows:

Ω2
C (M)

σΩ2
C

(M)

��

Ω2
C (M)

β

��
0 �� [Ext2R(M, ω)]ω �� [Ω2

C (M)]ωω αω
�� Nω.

Then Coker σΩ2
C (M)

∼= [Ext2R(M, ω)]ω = 0 by the snake lemma and (2). Because σΩ2
C (M) is a

monomorphism, σΩ2
C (M) is an isomorphism and Ω2

C (M) is ω-reflexive. �
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Let C ⊇ D be full subcategories of modR and C ∈ C , D ∈ D . The homomorphism C → D

is said to be a left D-approximation of C if HomR(D, X) → HomR(C, X) is epic for any X ∈ D .
Dually, the notion of right D-approximations is defined (see [9]).

Lemma 2.4 ([6, Theorem 1]) The following statements are equivalent for any M ∈ mod R.

(1) M is n-ω-torsionfree.

(2) There exists an exact sequence 0 → M
f1−→ ω1

f2−→ · · · fn−→ ωn in modR such that
Im fi → ωi is a left addR ω-approximation of Im fi for any 1 ≤ i ≤ n.

In particular, under the condition (2), we have Ext1R(Coker fi, ω) = 0 for any 1 ≤ i ≤ n.

3 When n-C -syzygy Modules Are n-ω-torsionfree

Before proving the main result in this section, we need some lemmas.

Lemma 3.1 Let C be a full subcategory of Tn
ω (mod R) and M ∈ mod R n-ω-torsionfree.

If there exists an exact sequence 0 → M → C0 → N → 0 in mod R with C0 ∈ C with
Ext1R(N, ω) = 0, then N is (n − 1)-ω-torsionfree.

Proof The case for n = 1 is trivial. Now suppose n ≥ 2. Since Ext1R(N, ω) = 0, by applying
(−)ω to the exact sequence 0 → M → C0 → N → 0, we get an exact sequence 0 → Nω →
Cω

0 → Mω → 0 and the following commutative diagram with exact rows:

0 �� M ��

σM

��

C0
��

σC0

��

N ��

σN

��

0

0 �� Mωω �� Cωω
0

α �� Nωω.

Because both σM and σC0 are isomorphisms, σN is monic and N is ω-torsionless. When n ≥ 3,
we have Exti

Sop(Mω, ω) = 0 for any 1 ≤ i ≤ n − 2, so α is epic, which implies that σN is an
isomorphism and N is ω-reflexive. Since C0 ∈ C , Exti

Sop(Cω
0 , ω) = 0 for any 1 ≤ i ≤ n − 2.

Thus Exti
Sop(Nω, ω) = 0 for 1 ≤ i ≤ n − 3 (when n ≥ 4) and N is (n − 1)-ω-torsionfree by

Lemma 2.2. �

Lemma 3.2 Let 0 → A → B → C → 0 be an exact sequence in mod R satisfying Ext1R(C, ω)
= 0. If both A and C are n-ω-torsionfree, then so is B.

Proof Let P1 → P0 → A → 0 and Q1 → Q0 → C → 0 be projective presentations of A and C

in mod R respectively. Then we have the following commutative diagram with exact columns
and rows:

0 �� P1
��

��

P1 ⊕ Q1
��

��

Q1
��

��

0

0 �� P0
��

��

P0 ⊕ Q0
��

��

Q0
��

��

0

0 �� A ��

��

B ��

��

C ��

��

0

0 0 0.



Relative Syzygies and Grade of Modules 495

Because Ext1R(C, ω) = 0, by applying (−)ω to the above diagram, we get the following commu-
tative diagram with exact columns and rows:

0

��

0

��

0

��
0 �� Cω ��

��

Bω ��

��

Aω ��

��

0

0 �� Qω
0

��

��

Pω
0 ⊕ Qω

0
��

��

Pω
0

��

��

0

0 �� Qω
1

��

��

Pω
1 ⊕ Qω

1
��

��

Pω
1

��

��

0

TrωC

��

TrωB

��

TrωA

��
0 0 0.

Then by the snake lemma, 0 → TrωC → TrωB → TrωA → 0 is exact. Now the assertion follows
easily. �

The following is one of the main results in this paper.

Theorem 3.3 Let C be a full subcategory of ⊥n

R ω ∩ T n
ω (modR) and M ∈ genn(C ). Then the

following statements are equivalent.
(1) Ωn

C (M) is n-ω-torsionfree.
(2) There exists an exact sequence 0 → B → A → M → 0 in mod R such that A ∈ ⊥n

R ω and
ω-dimR B ≤ n − 1.

Proof Let M ∈ genn(C ). Then there exists an exact sequence 0 → Ωn
C (M) → Cn−1 →

Cn−2 → · · · → C1 → C0 → M → 0 in modR with each Ci ∈ C .
(1) ⇒ (2) Because Ωn

C (M) is n-ω-torsionfree by assumption, there exists an exact sequence
0 → Ωn

C (M) → ω0 → N1 → 0 in mod R with ω0 ∈ addR ω and Ext1R(N1, ω) = 0 by Lemma 2.4.
Consider the following push-out diagram:

0

��

0

��
0 �� Ωn

C (M) ��

��

ω0 ��

��

N1
�� 0

0 �� Cn−1
��

��

A1
��

��

N1
�� 0

Ωn−1
C (M)

��

Ωn−1
C (M)

��
0 0.
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Then Ext1R(A1, ω) = 0. If n = 1, then the middle column in the above diagram is the desired
exact sequence.

Now suppose n ≥ 2. Because N1 is (n − 1)-ω-torsionfree by Lemma 3.1, A1 is (n − 1)-ω-
torsionfree by Lemma 3.2 and the exactness of the middle row in the above diagram. Then by
Lemma 2.4, there exists an exact sequence

0 → A1 → ω1 → N2 → 0

in mod R with ω1 ∈ addR ω and Ext1R(N2, ω) = 0. Consider the following push-out diagram:

0

��

0

��
ω0

��

ω0

��
0 �� A1

��

��

ω1 ��

��

N2
�� 0

0 �� Ωn−1
C (M) ��

��

B2
��

��

N2
�� 0

0 0.

Then
ω- dimR B2 ≤ 1

and
Ext2R(N2, ω) = 0 (= Ext1R(N1, ω)).

Consider the following push-out diagram:

0

��

0

��
0 �� Ωn−1

C (M) ��

��

B2
��

��

N2
�� 0

0 �� Cn−2
��

��

A2
��

��

N2
�� 0

Ωn−2
C (M)

��

Ωn−2
C (M)

��
0 0.

From the middle row in the above diagram, we know that

Exti
R(A2, ω) = 0, for i = 1, 2.

Thus, if n = 2, then the middle column in this diagram is the desired exact sequence.
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If n ≥ 3, then we get similarly that both N2 and A2 are (n−2)-ω-torsionfree. So there exists
an exact sequence 0 → A2 → ω2 → N3 → 0 in mod R with ω2 ∈ addR ω and Ext1R(N3, ω) = 0
by Lemma 2.4. Similarly to the above, we construct the following two push-out diagrams:

0

��

0

��
B2

��

B2

��
0 �� A2

��

��

ω2 ��

��

N3
�� 0

0 �� Ωn−2
C (M) ��

��

B3
��

��

N3
�� 0

0 0

and

0

��

0

��
0 �� Ωn−2

C (M) ��

��

B3
��

��

N3
�� 0

0 �� Cn−3
��

��

A3
��

��

N3
�� 0

Ωn−3
C (M)

��

Ωn−3
C (M)

��
0 0.

If n = 3, then the middle column in the above diagram is the desired exact sequence. If n ≥ 4,
then, iterating this procedure, we get an exact sequence

0 → Bn → An → M → 0

in mod R with An ∈ ⊥n

R ω and

ω- dimR Bn ≤ n − 1.

(2) ⇒ (1) Let 0 → B → A → M → 0 be an exact sequence in mod R with A ∈ ⊥n

R ω and
ω-dimR B ≤ n − 1. Then we have an exact sequence

0 → ωn−1
fn−1−→ ωn−2

fn−2−→ · · · → ω0
f0−→ B → 0

in mod R with each ωi ∈ addR ω. Put

Bi = Im fi
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for each i (note: B0 = B and Bn−1 = ωn−1). Consider the following pull-back diagram:

0

��

0

��
Ω1

C (M)

��

Ω1
C (M)

��
0 �� B �� L ��

��

C0
��

��

0

0 �� B �� A ��

��

M ��

��

0

0 0.

It is easy to see that Ext1R(C0, B) = 0, so the middle row in the above diagram splits and
L ∼= B ⊕ C0. Adding C0 to the exact sequence 0 → B1 → ω0 → B → 0, we get an exact
sequence 0 → B1 → ω0 ⊕ C0 → B ⊕ C0 → 0.

Consider the following pull-back diagram:

0

��

0

��
B1

��

B1

��
0 �� A1

��

��

ω0 ⊕ C0
��

��

A �� 0

0 �� Ω1
C (M) ��

��

B ⊕ C0
��

��

A �� 0

0 0.

Applying a similar argument to the first column in the above diagram, we get exact sequences
0 → Ai+1 → ωi ⊕ Ci → Ai → 0 for any 0 ≤ i ≤ n − 1, where A0 = A and An = Ωn

C (M). The
assumption yields that Exti

R(A0, ω) = 0 = Exti
R(ω0 ⊕ C0, ω) for any 1 ≤ i ≤ n. So we get an

exact sequence 0 → Aω
0 → (ω0 ⊕ C0)ω → Aω

1 → 0 and Exti
R(A1, ω) = 0 for any 1 ≤ i ≤ n − 1.

Inductively, we get an exact sequence 0 → Aω
i → (ωi ⊕Ci)ω → Aω

i+1 → 0 for any 0 ≤ i ≤ n− 1
and Extj

R(Ai, ω) = 0 for any 1 ≤ j ≤ n − i.
Because ω0 ⊕ C0 is ω-torsionless, A1 is also ω-torsionless. If n ≥ 2, we have the following

commutative diagram with exact rows:

0 �� A2
��

σA2

��

ω1 ⊕ C1
��

σω1⊕C1

��

A1
��

σA1

��

0

0 �� Aωω
2

�� (ω1 ⊕ C1)ωω �� Aωω
1 .
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Then σA2 is an isomorphism by the snake lemma and so A2 is ω-reflexive. If n ≥ 3, we have a
commutative diagram with exact rows:

0 �� A3
��

σA3

��

ω2 ⊕ C2
��

σω2⊕C2

��

A2
��

σA2

��

0

0 �� Aωω
3

�� (ω2 ⊕ C2)ωω �� Aωω
2

�� Ext1Sop(Aω
3 , ω) �� 0.

It follows that σA3 is an isomorphism and Ext1Sop(Aω
3 , ω) = 0, which implies that A3 is

3-ω-torsionfree by Lemma 2.2. Repeating this procedure, we get that Ai is i-ω-torsionfree for
any 1 ≤ i ≤ n. In particular, Ωn

C (M)(= An) is n-ω-torsionfree. �
As an immediate consequence of Theorem 3.3, we get the following

Corollary 3.4 Let C be a full subcategory of ⊥n

R ω∩T n
ω (mod R) containing addR R. Then the

following statements are equivalent for a module M ∈ mod R.
(1) Ωn

C (M) is n-ω-torsionfree.
(2) There exists an exact sequence 0 → B → A → M → 0 in mod R such that A ∈ ⊥n

R ω and
ω-dimR B ≤ n − 1.

It is easy to see that the exact sequence in Corollary 3.4 (2) is a right ⊥n

R ω-approximation
of M .

Recall from [10] that a module M in mod R is said to have generalized Gorenstein dimension
zero with respect to ω if the following conditions are satisfied: (1) M is ω-reflexive; and (2)
Exti

R(M, ω) = 0 = Exti
Sop(Mω, ω) for any i ≥ 1. We use Gω to denote the full subcategory of

mod R consisting of the modules with generalized Gorenstein dimension zero with respect to
ω. In addition, we denote by add Rω = add Rω ∪ add RR.

In the following result, the equivalence between (1) and (4) is a non-commutative version
of Theorem 1.1 due to Takahashi.

Corollary 3.5 The following statements are equivalent for a module M ∈ mod R.
(1) Ωn

R(M) is n-ω-torsionfree.
(2) Ωn

Gω
(M) is n-ω-torsionfree.

(3) Ωn
add Rω

(M) is n-ω-torsionfree.

(4) There exists an exact sequence 0 → B → A → M → 0 in mod R with A ∈ ⊥n

R ω and
ω-dimR B ≤ n − 1.

Proof We get (1) ⇔ (4), (2) ⇔ (4) and (3) ⇔ (4) by putting C = add RR, C = Gω and
C = add Rω in Corollary 3.4, respectively. �

The equivalence between (1) and (2) in the following result is an ω-version of a result of
Auslander and Bridger in [1, Proposition 2.21].

Corollary 3.6 The following statements are equivalent for a module M ∈ genn(add Rω).
(1) Ωn

ω(M) is n-ω-torsionfree.
(2) There exists an exact sequence 0 → B → A → M → 0 in mod R with A ∈ ⊥n

R ω and
ω-dimR B ≤ n − 1.

(3) There exists an exact sequence 0 → Ω1
ω(M) → B′ → A′ → 0 in mod R with A′ ∈ ⊥n

R ω

and ω-dimR B′ ≤ n − 1.
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Proof Putting C = add Rω in Theorem 3.3, we get (1) ⇔ (2).
(2) ⇔ (3) Let 0 → Ω1

ω(M) → ω0 → M → 0 be an exact sequence in mod R with ω0 ∈
addR ω.

Assume that the condition (2) is satisfied, that is, there exists an exact sequence 0 → B →
A → M → 0 in mod R with A ∈ ⊥n

R ω and ω-dimR B ≤ n − 1. Consider the following pull-back
diagram:

0

��

0

��
Ω1

ω(M)

��

Ω1
ω(M)

��
0 �� B �� B

′ ��

��

ω0 ��

��

0

0 �� B �� A ��

��

M ��

��

0

0 0.

Note that addR ω ⊆ ⊥n

R ω. So the middle row in the above diagram splits and B′ ∼= B ⊕ ω0,
which implies that ω-dimR B′ ≤ n − 1. Thus the middle column is the desired exact sequence
in (3).

Conversely, assume that the condition (3) is satisfied, that is, there exists an exact sequence
0 → Ω1

ω(M) → B′ → A′ → 0 in modR with A′ ∈ ⊥n

R ω and ω-dimR B′ ≤ n − 1. Consider the
following push-out diagram:

0

��

0

��
0 �� Ω1

ω(M) ��

��

B′ ��

��

A′ �� 0

0 �� ω0 ��

��

A ��

��

A′ �� 0

M

��

M

��
0 0.

From the middle row in the above diagram, we get that A ∈ ⊥n

R ω. So the middle column is the
desired exact sequence in (2). �

We define ω-fin.dim R = sup{ω-dimR M | M ∈ mod R with ω-dimR M < ∞}, and denote
the injective dimension of Rω by idR ω. In the following result we establish the relation between
idR ω and ω-fin.dim R when the condition (4) in Corollary 3.5 (that is, Theorem 3.3 (2)) is
satisfied for any module in modR.
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Proposition 3.7 (1) If idR ω ≤ n, then ω-fin.dim R ≤ n.

(2) Assume that the condition (4) in Corollary 3.5 is satisfied for any module M in mod R.
If ω-fin.dim R ≤ n − 2, then idR ω ≤ n − 1.

(3) Let Rω be generalized tilting with S = End(Rω). If the condition (4) in Corollary 3.5 is
satisfied for any module M in mod R and any positive integer n, then ω-fin.dim R ≤ idR ω ≤ ω-
fin.dim R + 1.

Proof (1) Assume that idR ω ≤ n and M ∈ mod R with ω-dimR M = m(< ∞). Then there
exists an exact sequence 0 → ωm → · · · → ω1 → ω0 → M → 0 in mod R with all ωi ∈ addR ω.
If m > n, we put Kn = Im(ωn → ωn−1). Then Exti

R(Kn, ω) ∼= Extn+i
R (M, ω) = 0 for any i ≥ 1.

So the exact sequence 0 → ωm → · · · → ωn → Kn → 0 splits, and hence Kn ∈ addR ω. Thus
ω-dimR M ≤ n and ω-fin.dim R ≤ n.

(2) Let M ∈ mod R. Then by assumption there exists an exact sequence 0 → B → A →
M → 0 in modR with A ∈ ⊥n

R ω and ω-dimR B ≤ n − 1. If ω-fin.dim R ≤ n − 2, then
ω-dimR B ≤ n − 2. So Extn

R(M, ω) ∼= Extn−1
R (B, ω) = 0, and hence idR ω ≤ n − 1.

(3) It is an immediate consequence of (1) and (2). �

4 The Grade of Modules with Respect to ω

The following is another main result in this paper.

Theorem 4.1 Let C be a full subcategory of ⊥n

R ω ∩ T n
ω (modR) and M ∈ genn(C ). Then the

following statements are equivalent.

(1) Ωi
C (M) is i-ω-torsionfree for any 1 ≤ i ≤ n.

(2) gradeω Exti+1
R (M, ω) ≥ i for any 1 ≤ i ≤ n − 1.

Proof We proceed by induction on n. The case for n = 1 is trivial, and the case for n = 2
follows from Lemma 2.3. Now suppose that n ≥ 3 and 0 → Ωn

C (M) → Cn−1
f−→ Cn−2 →

· · · → C0 → M → 0 is an exact sequence in mod R with all Ci ∈ C . Put N = Coker fω.

(2) ⇒ (1) By the induction hypothesis, Ωn
C (M) is (n − 1)-ω-torsionfree (and hence ω-

reflexive). We claim that Exti
Sop(N, ω) = 0 for any 1 ≤ i ≤ n − 2.

By [7, Lemma 2.4], Ωn
C (M) ∼= Nω and [Ωn

C (M)]ω ∼= Nωω. If n = 3, then Coker f (=
Ωn−2

C (M)) is a submodule of C0 and so Coker f is ω-torsionless. By Lemma 2.1, Ext1Sop(N, ω) ∼=
Ker σCoker f = 0. If n = 4, then Coker f is ω-reflexive by the induction hypothesis. Thus

Ext1Sop(N, ω) ∼= Ker σCoker f = 0 and Ext2Sop(N, ω) ∼= CokerσCoker f = 0

and the case for n = 4 follows. If n ≥ 5, then Coker f is (n − 2)-ω-torsionfree again by the
induction hypothesis. Thus

Exti
Sop((Coker f)ω, ω) = 0

for any 1 ≤ i ≤ n − 4 by Lemma 2.2. It follows from the exact sequence

0 → (Coker f)ω → Cω
n−2

fω

−→ Cω
n−1 → N → 0

that Exti
Sop(N, ω) = 0 for any 3 ≤ i ≤ n − 2. So Exti

Sop(N, ω) = 0 for any 1 ≤ i ≤ n − 2. The
claim is proved.



502 Liu Z. F. and Huang Z. Y.

By Lemma 2.1, we have an exact sequence:

0 → Ext1R(Coker f, ω) → N
σN−→ Nωω → Ext2R(Coker f, ω) → 0.

Then
Ker σN

∼= Ext1R(Coker f, ω) ∼= Extn−1
R (M, ω)

and
Coker σN

∼= Ext2R(Coker f, ω) ∼= Extn
R(M, ω).

So we get the following exact sequences:

0 → Extn−1
R (M, ω) → N

π−→ Im σN → 0, (4.1)

0 → Im σN
μ−→ Nωω → Extn

R(M, ω) → 0, (4.2)

where σN = μπ is the natural epic-monic decomposition of σN . Since Exti
Sop(N, ω) = 0 for any

1 ≤ i ≤ n − 2 and gradeω Extn−1
R (M, ω) ≥ n − 2, from the exact sequence (4.1), we have

Exti
Sop(ImσN , ω) = 0

for any 1 ≤ i ≤ n−2. Moreover, since gradeω Extn
R(M, ω) ≥ n−1, from the exact sequence (4.2),

we get Exti
Sop(Nωω, ω) = 0 for any 1 ≤ i ≤ n − 2, which yields

Exti
Sop([Ωn

C (M)]ω, ω) = 0

for any 1 ≤ i ≤ n − 2. So Ωn
C (M) is n-ω-torsionfree by Lemma 2.2.

(1) ⇒ (2) By the induction hypothesis, gradeω Exti+1
R (M, ω) ≥ i for any 1 ≤ i ≤ n − 2. So

it remains to show that
gradeω Extn

R(M, ω) ≥ n − 1.

From the proof of (2) ⇒ (1), we have the following facts:
(i) There exists exact sequences (4.1) and (4.2).
(ii) Ωn

C (M) ∼= Nω.
(iii) Exti

Sop(N, ω) = 0 for any 1 ≤ i ≤ n − 2.
(iv) Exti

Sop(Im σN , ω) = 0 for any 1 ≤ i ≤ n − 2.
Since Ωn

C (M) is n-ω-torsionfree (by (1)) and Ωn
C (M) ∼= Nω, Nω is ω-reflexive and

Exti
Sop(Nωω, ω) ∼= Exti

Sop([Ωn
C (M)]ω, ω) = 0

for any 1 ≤ i ≤ n− 2 by Lemma 2.2. Since Exti
Sop(Im σN , ω) = 0 for any 1 ≤ i ≤ n− 2 and we

have the exact sequence

0 → Im σN
μ−→ Nωω → Extn

R(M, ω) → 0,

Exti
Sop(Extn

R(M, ω), ω) = 0

for any 2 ≤ i ≤ n − 2. On the other hand, Nω is ω-reflexive, so πωμω = σω
N is an isomorphism

by [8, Proposition 20.14], and it follows that πω and μω are isomorphisms. Moreover, we have
a long exact sequence:

0 → [Extn
R(M, ω)]ω → Nωωω μω

−→ (ImσN )ω → Ext1Sop(Extn
R(M, ω), ω) → Ext1Sop(Nωω, ω) = 0.
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So

[Extn
R(M, ω)]ω ∼= Ker μω = 0

and

Ext1Sop(Extn
R(M, ω), ω) ∼= Cokerμω = 0.

Hence we get gradeω Extn
R(M, ω) ≥ n − 1. �

As an immediate consequence of Theorem 4.1, we get the following

Corollary 4.2 Let C be a full subcategory of ⊥n

R ω ∩ T n
ω (modR) containing addR R. Then

following statements are equivalent for a module M ∈ mod R.
(1) Ωi

C (M) is i-ω-torsionfree for any 1 ≤ i ≤ n.
(2) gradeω Exti+1

R (M, ω) ≥ i for any 1 ≤ i ≤ n − 1.

In the following result, the equivalence between (1) and (4) is a non-commutative version
of [3, Proposition 4.2].

Corollary 4.3 The following statements are equivalent for a module M ∈ mod R.
(1) Ωi

R(M) is i-ω-torsionfree for any 1 ≤ i ≤ n.
(2) Ωi

Gω
(M) is i-ω-torsionfree for any 1 ≤ i ≤ n.

(3) Ωi
add Rω

(M) is i-ω-torsionfree for any 1 ≤ i ≤ n.
(4) gradeωExti+1

R (M, ω) ≥ i for any 1 ≤ i ≤ n − 1.

Proof By Corollary 3.5, we have (1) ⇔ (2) ⇔ (3). Putting C = add RR in Theorem 4.1, we
get (1) ⇔ (4). �

Putting C = addR ω in Theorem 4.1, we get the following

Corollary 4.4 The following statements are equivalent for a module M ∈ genn(add Rω).
(1) Ωi

ω(M) is i-ω-torsionfree for any 1 ≤ i ≤ n.
(2) gradeω Exti+1

R (M, ω) ≥ i for any 1 ≤ i ≤ n − 1.

The following is a special case of Corollary 4.4, which generalizes Theorem 1.4 due to
Auslander and Bridger.

Corollary 4.5 The following statements are equivalent for a module M ∈ mod R.
(1) Ωi

R(M) is i-torsionfree for any 1 ≤ i ≤ n − 1.
(2) gradeR Exti+1

R (M, R) ≥ i for any 1 ≤ i ≤ n − 1.
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